| Home | E-Submission | Sitemap | Login | Contact Us |  
J. Korean Ceram. Soc. > Volume 60(1); 2023 > Article
Journal of the Korean Ceramic Society 2023;60(1): 41-51.
doi: https://doi.org/10.1007/s43207-022-00230-z
The effect of cobalt ions doping in ZnCr2O4 spinel oxide for the catalytic activity of methane combustion
Jia He1, Xiaoqiang Shao1, Qin Su1, Donglin Zhao1, Shaojie Feng1,2, Won-Chun Oh3
1Key Laboratory of Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, People’s Republic of China
2Anhui Province International Center on Advanced Building Materials, Anhui Jianzhu University, Hefei 230601, People’s Republic of China
3Department of Advanced Materials Science and Engineering, Hanseo University, Seosan 31962, Republic of Korea
Correspondence  Shaojie Feng ,Email: fengshaojie@ahjzu.edu.cn
Won-Chun Oh ,Email: wc_oh@hanseo.ac.kr
Received: December 22, 2021; Revised: June 28, 2022   Accepted: July 4, 2022.  Published online: August 3, 2022.
A series of novel cobalt ion-doped ZnCr2−xCoxO4 (x = 0, 0.1, 0.15, 0.2) spinel oxides were synthesized with the hydrothermal method. X-ray diffraction, scanning electron microscope, specific surface area, Raman spectroscopy, X-ray photoelectron spectroscopy, temperature-programmed desorption of oxygen, and other analytical techniques were used to characterize the structure, morphology, and catalytic performance of each sample. Experiment results showed that the doping of cobalt ion significantly promoted the phase crystallization of spinel oxide. Cobalt ion-doped ZnCr2−xCoxO4 (x = 0.1, 0.15, 0.2) nanoparticles with high specific surface area were synthesized at 773 K, with ZnCr2O4 forming a spinel phase at 1173 K. Catalytic experiments revealed that the catalytic activity of ZnCr2−xCoxO4 was effectively improved. Cobalt ion-doped ZnCr1.85Co0.15O4 catalyst catalyzed methane combustion reaction temperature at T90% (the temperature where 90% of methane was converted) of about 573 K, while the undoped ZnCr2O4 sample had the highest catalytic performance at T90% of about 773 K. The order of catalytic activity was: ZnCr1.85Co0.15O4 > ZnCr1.9Co0.1O4 > ZnCr1.8Co0.2O4 > ZnCr2O4. Results of catalytic experiments showed that the surface area of the catalyst increased after partial replacement of chromium ions by cobalt ions and that the increase in surface area of the catalyst provided more active sites, thus improving the reaction activity.
Key words: Spinel · ZnCr2−xCoxO4 · Cobalt ion doping · Methane combustion
Editorial Office
Meorijae Bldg., Suite # 403, 76, Bangbae-ro, Seocho-gu, Seoul 06704, Korea
TEL: +82-2-584-0185   FAX: +82-2-586-4582   E-mail: ceramic@kcers.or.kr
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © The Korean Ceramic Society.                      Developed in M2PI