| Home | E-Submission | Sitemap | Login | Contact Us |  
J. Korean Ceram. Soc. > Volume 51(4); 2014 > Article
Journal of the Korean Ceramic Society 2014;51(4): 243.
doi: https://doi.org/10.4191/kcers.2014.51.4.243
Characterization of Spherical NiO-YSZ Anode Composites for Solid Oxide Fuel Cells Synthesized by Ultrasonic Spray Pyrolysis
Chae-Hyun Lim, Ki-Tae Lee1
Division of Advanced Materials Engineering, Chonbuk National University
1Hydrogen and Fuel Cell Research Center, Chonbuk National University
Spherical NiO-YSZ particles were synthesized by ultrasonic spray pyrolysis (USP). The morphology of the synthesized particles can be modified by controlling parameters such as precursor pH, carrier-gas flow-rate, and temperature of the heating zone. The synthesized spherical NiO-YSZ particles have rough surface morphology at high carrier-gas flow-rates due to rapid gas exhaustion and insufficient particle ordering. The Ni-YSZ cermet anode synthesized by ultrasonic spray pyrolysis at a flow rate of l L/min, with precursor solution at pH4, showed a higher maximum power density of 256 $mW/cm^2$ compared to a conventionally mixed Ni-YSZ anode (185 $mW/cm^2$) at $800^{circ}C$. While the area-specific resistance of conventionally mixed Ni-YSZ anodes increases gradually with operation time (indicating performance degradation), the Ni-YSZ anode synthesized by USP does not exhibit any performance degradation, even after 500 h.
Key words: Solid oxide fuel cell, Anode material, Ultrasonic spray pyrolysis, Electrochemical performance, Long-term stability
Editorial Office
Meorijae Bldg., Suite # 403, 76, Bangbae-ro, Seocho-gu, Seoul 06704, Korea
TEL: +82-2-584-0185   FAX: +82-2-586-4582   E-mail: ceramic@kcers.or.kr
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © The Korean Ceramic Society.                      Developed in M2PI