| Home | E-Submission | Sitemap | Login | Contact Us |  
J. Korean Ceram. Soc. > Volume 49(1); 2012 > Article
Journal of the Korean Ceramic Society 2012;49(1): 84.
doi: https://doi.org/10.4191/kcers.2012.49.1.084
ZrTiO4계 Gray 안료 합성과 형성기구
황동하, 이병하
명지대학교 신소재공학과
Synthesis and Formation Mechanism of ZrTiO4 Gray Pigment
Dong-Ha Hwang, Byung-Ha Lee
Department of Material Science & Engineering, Myongji University
Attempts were made to develop a stable gray pigment at reducing atmosphere, substituting Ti in $ZrTiO_4$ with Mn, Fe, Co and Cu The pigment synthesized at $1300~1500^{circ}C$ by solid state method with the composition of $ZrTi_{1-x-y}A_xB_yO_4$ (x = y = 0.005, 0.015, 0.035, 0.055, 0.075, 0.095, 0.115, 0.135, 0.155, 0.175 and 0.195 mole, A = Mn(III), Fe(III), Co(II, III) and Cu(II) (chromophores), B = Sb (counterion). The pigments were fired at $1400^{circ}C$ for 3 h with substitute amount changes of Mn, Fe, Co and Cu to $ZrTiO_4$ crystals, and analyzed by Raman spectroscopy to figure out substitute limits. Results indicated 0.035 mole for Mn, 0.115 mole for Fe, 0.015 mole for Co and 0.015 mole for Cu as substitute limits, respectively. Figs. 1, 2, 3, and 4 represent each substitute pigments of Mn, Fe, Co and Cu. Synthesized pigment was applied to a lime and a lime-magnesia glaze at 7 wt% each, and fired at reducing atmosphere of $1240^{circ}C$, soaking time 1h. Gray color was obtained with CIE-$L^*a^*b^*$ values at 44.55, -0.65, 1.19(Mn), 40.36, -0.90, 0.30(Fe), 42.63, -0.03, -1.49(Cu) and -40.79, -0.28, -0.91(Co), respectively.
Key words: Zirconium titatnate, $ZrTiO_4$, Color properties, Gray ceramic pigment, Co, Cu, Mn
Editorial Office
Meorijae Bldg., Suite # 403, 76, Bangbae-ro, Seocho-gu, Seoul 06704, Korea
TEL: +82-2-584-0185   FAX: +82-2-586-4582   E-mail: ceramic@kcers.or.kr
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © The Korean Ceramic Society.                      Developed in M2PI