| Home | E-Submission | Sitemap | Login | Contact Us |  
top_img
J. Korean Ceram. Soc. > Volume 47(6); 2010 > Article
Journal of the Korean Ceramic Society 2010;47(6): 498.
doi: https://doi.org/10.4191/kcers.2010.47.6.498
Al2O3와 TiO2의 반응소결로 제조한 Al2TiO5-기계가공성 세라믹스
박재현, 이원재, 김일수
동의대학교 융합부품공학과
Al2TiO5-machinable Ceramics Made by Reactive Sintering of Al2O3 and TiO2
Jae-Hyun Park, Won-Jae Lee, Il-Soo Kim
Department of Materials and Components Engineering, Dongeui University
ABSTRACT
Aluminium titanate($Al_2TiO_5$) has extremely anisotropic thermal expansion properties in single crystals, and polycrystalline material spontaneously microcracks in the cooling step after sintering process. These fine intergranular cracks limit the strength of the material, but provide an effective mechanism for absorbing strain energy during thermal shock and preventing catastrophic crack propagation. Furthermore, since machinable BN-ceramics used as an insulating substrate in current micro-electronic industry are very expensive, the development of new low-cost machinable substrate ceramics are consistently required. Therefore, cheap $Al_2TiO_5$-machinable ceramics was studied for the replacement of BN ceramics. $Al_2O_3-Al_2TiO_5$ ceramic composite was fabricated via in-situ reaction sintering. $Al_2O_3$ and $TiO_2$ powders were mixed with various mol-ratio and sintered at 1400 to $1600^{circ}C$ for 1 h. Density, hardness and strength of sintered ceramics were systematically measured. Phase analysis and microstructures were observed by XRD and SEM, respectively. Machinability of each specimens was tested by micro-hole machining. The results of research showed that the $Al_2TiO_5$-composites could be used for low-cost machinable ceramics.
Key words: $Al_2TiO_5$, Machinable ceramics, Reaction sintering
Editorial Office
Meorijae Bldg., Suite # 403, 76, Bangbae-ro, Seocho-gu, Seoul 06704, Korea
TEL: +82-2-584-0185   FAX: +82-2-586-4582   E-mail: ceramic@kcers.or.kr
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © The Korean Ceramic Society.                      Developed in M2PI