| Home | E-Submission | Sitemap | Login | Contact Us |  
top_img
J. Korean Ceram. Soc. > Volume 44(12); 2007 > Article
Journal of the Korean Ceramic Society 2007;44(12): 710.
doi: https://doi.org/10.4191/kcers.2007.44.1.710
LSGM계 음극지지형 고체산화물 연료전지에 적용된 LDC 완충층의 효과
송은화, 정태주1, 김혜령, 손지원, 김병국, 이종호, 이해원
한국과학기술연구원 재료기술연구본부
1안동대학교 신소재공학부
Effect of the LDC Buffer Layer in LSGM-based Anode-supported SOFCs
Eun-Hwa Song, Tai-Joo Chung1, Hae-Ryoung Kim, Ji-Won Son, Byung-Kook Kim, Jong-Ho Lee, Hae-Weon Lee
Materials Science & Technology Research Division, Korea Institute of Science and Technology
1School of Materials Science & Engineering, Andong National University
ABSTRACT
LSGM$(La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}O_{3-{delta}})$ is the very promising electrolyte material for lower-temperature operation of SOFCs, especially when realized in anode-supported cells. But it is notorious for reacting with other cell components and resulting in the highly resistive reaction phases detrimental to cell performance. LDC$(La_{0.4}Ce_{0.6}O_{1.8})$, which is known to keep the interfacial stability between LSGM electrolyte and anode, was adopted in the anode-supported cell, and its effect on the interfacial reactivity and electrochemical performance of the cell was investigated. No severe interfacial reaction and corresponding resistive secondary phase was found in the cell with LDC buffer layer, and this is due to its ability to sustain the La chemical potential in LSGM. The cell exhibited the open circuit voltage of 0.64V, the maximum power density of 223 $mW/cm^2$, and the ohmic resistance of $0.17{Omega}cm^2$ at $700^{circ}C$. These values were much improved compared with those from the cell without any buffer layer, which implies that formation of the resistive reaction phases in LSGM and then deterioration of the cell performance is resulted mainly from the La diffusion from LSGM electrolyte to anode.
Key words: SOFC, LSGM electrolyte, Buffer layer, Interfacial reaction, Cell performance
TOOLS
PDF Links  PDF Links
Full text via DOI  Full text via DOI
Download Citation  Download Citation
Share:      
METRICS
2
Crossref
1
Scopus
3,600
View
60
Download
Related articles
Characterization of the LSGM-Based Electrolyte-Supported SOFCs  2006 ;43(5)
Effect of the Pore Structure on the Anodic Property of SOFC  2002 ;39(1)
Editorial Office
Meorijae Bldg., Suite # 403, 76, Bangbae-ro, Seocho-gu, Seoul 06704, Korea
TEL: +82-2-584-0185   FAX: +82-2-586-4582   E-mail: ceramic@kcers.or.kr
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © The Korean Ceramic Society.                      Developed in M2PI